DICER1 is essential for survival of postmitotic rod photoreceptor cells in mice.
نویسندگان
چکیده
Photoreceptor cell death is the proximal cause of blindness in many retinal degenerative disorders; hence, understanding the gene regulatory networks that promote photoreceptor survival is at the forefront of efforts to combat blindness. Down-regulation of the microRNA (miRNA)-processing enzyme DICER1 in the retinal pigmented epithelium has been implicated in geographic atrophy, an advanced form of age-related macular degeneration (AMD). However, little is known about the function of DICER1 in mature rod photoreceptor cells, another retinal cell type that is severely affected in AMD. Using a conditional-knockout (cKO) mouse model, we report that loss of DICER1 in mature postmitotic rods leads to robust retinal degeneration accompanied by loss of visual function. At 14 wk of age, cKO mice exhibit a 90% reduction in photoreceptor nuclei and a 97% reduction in visual chromophore compared with those in control littermates. Before degeneration, cKO mice do not exhibit significant defects in either phototransduction or the visual cycle, suggesting that miRNAs play a primary role in rod photoreceptor survival. Using comparative small RNA sequencing analysis, we identified rod photoreceptor miRNAs of the miR-22, miR-26, miR-30, miR-92, miR-124, and let-7 families as potential factors involved in regulating the survival of rods.
منابع مشابه
Two transcription factors can direct three photoreceptor outcomes from rod precursor cells in mouse retinal development.
The typical mammalian visual system is based upon three photoreceptor types: rods for dim light vision and two types of cones (M and S) for color vision in daylight. However, the process that generates photoreceptor diversity and the cell type in which diversity arises remain unclear. Mice deleted for thyroid hormone receptor β2 (TRβ2) and neural retina leucine zipper factor (NRL) lack M cones ...
متن کاملTransformation of cone precursors to functional rod photoreceptors by bZIP transcription factor NRL.
Networks of transcriptional regulatory proteins dictate specification of neural lineages from multipotent retinal progenitors. Rod photoreceptor differentiation requires the basic motif-leucine zipper (bZIP) transcription factor NRL, because loss of Nrl in mice (Nrl-/-) results in complete transformation of rods to functional cones. To examine the role of NRL in cell fate determination, we gene...
متن کاملRax Homeoprotein Regulates Photoreceptor Cell Maturation and Survival in Association with Crx in the Postnatal Mouse Retina.
The Rax homeobox gene plays essential roles in multiple processes of vertebrate retina development. Many vertebrate species possess Rax and Rax2 genes, and different functions have been suggested. In contrast, mice contain a single Rax gene, and its functional roles in late retinal development are still unclear. To clarify mouse Rax function in postnatal photoreceptor development and maintenanc...
متن کاملNotch1 is required in newly postmitotic cells to inhibit the rod photoreceptor fate.
Several models of cell fate determination can be invoked to explain how single retinal progenitor cells (RPCs) produce different cell types in a terminal division. To gain insight into this process, the effects of the removal of a cell fate regulator, Notch1, were studied in newly postmitotic cells using a conditional allele of Notch1 (N1-CKO) in mice. Almost all newly postmitotic N1-CKO cells ...
متن کاملNrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice
In retinitis pigmentosa, loss of cone photoreceptors leads to blindness, and preservation of cone function is a major therapeutic goal. However, cone loss is thought to occur as a secondary event resulting from degeneration of rod photoreceptors. Here we report a genome editing approach in which adeno-associated virus (AAV)-mediated CRISPR/Cas9 delivery to postmitotic photoreceptors is used to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
دوره 28 8 شماره
صفحات -
تاریخ انتشار 2014